

Leaders in Environmental Testing

Emerging Technologies – Toxic Organics

Advances in High-Volume Sampling and Trace Analysis of Persistent **Organic Pollutants**

Newark Bay Estuary Participants

- **► United States Geological Survey (USGS-NJ)**
- ➤ New Jersey Department of Environmental Protection (NJDEP)
- >Stevens Institute Rutgers University
- **▶** Severn Trent Laboratories
- **▶** Battelle Environmental Divisions

New Jersey Toxic Sediment Reduction Program

- Determine sources and concentrations of organic contaminants in the Newark Bay and Hudson River Estuary system.
- Detect as many target compound as possible.
- Obtain samples with target compounds in a range of magnitudes above field blanks and lab blanks.
- >> High-volume multi-stage sampling train. Toxic Organics Platform Sampler (TOPS).

Persistent Organic Pollutants (POPs) Studied

- Polychlorinated Dioxins and Furans (PCDDs/PCDFs) (17 analytes)
- Polychlorinated Biphenyls (PCBs) (113 analytes)
- Organochlorine Pesticides (OCPs) (24 analytes)
- Polynuclear Aromatic Hydrocarbons (PAHs) (27 analytes)

New York / New Jersey Harbor Estuary

Sampling locations:

- heads of tide,
- combined sewer outfalls
- mixed pools.

Modified TOPS Sampler

TOPS Sampler

Large volume sediment/water phase sampler using filters and XAD resin columns

Filters

Flat GF/F

142 mm diameter

0.7 micron,
nominal pore
size

GFF Canister
'4" in length
0.5 micron,
nominal pore
size

Laboratory Analysis – Extraction, Cleanup, Concentration, GC/MS

Phase/Method

LCL for TOPS versus 1L Grab Sample

Phase/Method

Recovery of NIST SRMs from XAD resin Typical time between spiking and analysis = 7 to 30 days

Analyte Class	Spiking Medium	Spike Levels ng/sample	Certified Analytes	Lowest Recovery	Highest Recovery	Average Recovery
OC						
Pesticides	XAD	1-5	14	66	130	88.4
PCBs	XAD	20-50	23	82	157	102
Dioxins	XAD	1	1		111	

Recoveries of NIST PAH SRM from Water

PAHs	Water	100-500	22	78	133	101
------	-------	---------	----	----	-----	-----

Pesticide Data FMI flowrate vs. Breakthrough

- Lindane
- Dieldrin
- ▲ Alpha-BHC

POC Removal at Flat Filter

How low can we measure? Example - PCB Congener EDLs (EDL = Concentration associated with a peak at 2.5 X noise, during analysis.)

Range of values observed in this work:

- \triangleright Dissolved (XAD) = 15 to 450 pg (0.3 to 9 pg/L for 50 L sample)
- Filters = 25 to 550 pg (8 to 180 pg/g for 3 gram sample) For a 500 L sample at 6 mg/L, 0.016 to 0.36 pg/L

This assumes that 100% of contaminants entering the sampler are trapped by the filters and XAD, AND recovered through analysis.

An evaluation of sampling & analysis validity was performed by spiking river water with NIST sediment and liquid SRMs.

Validation Study - Apparatus

Sampling & Analysis Validation - Dioxins & Furans

Sampling & Analysis Validation PCBs

Congener (BZ Number)

Summary

Leaders in Environmental Testing

- Operating limits were determined for flow rate, filter configuration, minimum POC, XAD bed volume.
- Calibration range for all compound classes were reduced by 1-4 orders of magnitude below EPA Methods.
- •Measured detection limits (EDLs) have been demonstrated at ppq and sub-ppq levels for POPs.
- Laboratory analysis precision and recovery have been demonstrated by SRM analysis. (PAHs, PCBs, OCPs, TCDD).
- Sampling and analysis accuracy has been demonstrated by SRM analysis (PCDD/Fs, PCBs). PAH data is in progress.
- ■TOPs met program goals for PCDD/F, PCB, PAH (sediments). OCP data not yet evaluated.

Acknowledgements

Leaders in Environmental Testing

- ➤ Timothy Wilson, Jennifer Bonin– USGS, Trenton, NJ
- ➤ David McNeil, Snell Mills STL Knoxville Specialties Staff
- **▶** Joel Pecchioli New Jersey DEP, Trenton, NJ
- ➤ Tsian Liang Su Stevens Institute Rutgers University
- ➤ Simon Litten, Larry Bailey New York DEC, Albany NY

Leaders in Environmental Testing

more information...

>dthal@stl-inc.com

>tpwilson@usgs.gov